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1 Introduction

Agent-Based Modelling (ABM) is a bottom-up approach to studying the be-
haviour of complex systems [42]. Systems are modelled as a collection of individ-
ual agents where each agent encapsulates private state and can make decisions
based on a set of rules [6]. The behaviour of the system emerges through the
decisions made by these agents and their interactions with one another. ABM
has been applied in many domains including logistics [20], biology, ecology, and
social science [39].

One of the key challenges in ABM is the ability to model systems of increasing
complexity [14]. Work has shown that more complex ABM cannot be captured
by a single model on a single machine [33]. Current solutions to this scaling
problem include the use of Hybrid Simulation (HS) which combines multiple
interconnected sub-simulations where each simulation may be implemented using
different modelling techniques [22]. The work in [14] builds upon this further by
exploring the use of loosely-coupled microservices to implement HS at scale.

In recent years, there has been increasing concerns around centralised web
services in areas such as privacy, governance, surveillance, and security. This
has triggered the emergence of new distributed technologies such as blockchain
technology (BCT) [51]. Blockchains, such as the Ethereum blockchain, come
equipped with a built in Turing-complete programming language which can be
used to create decentralised applications which are executed publicly on a global
network of decentralised nodes.

The goal of this work is to explore the use of BCT to achieve web scale
agent-based simulations. This paper explores existing literature and provides
an overview of ABM; issues with, and current solutions for, scaling ABMs; an
overview of BCT; and existing work utilising BCT for scaling ABMs.

2 Agent Based Simulations

2.1 Introduction

The history of ABM can be traced back to the work of John von Neumann in
the 1960’s and his theory of self-reproducing automata, self operating machines
used to synthesize natural systems [26].
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In ABM, a system is modeled as a collection of autonomous decision-making
entities called agents. Each agent individually assesses its situation and makes
decisions on the basis of a set of rules [6]. The behaviour of the system emerges
through the decisions made by these agents and their interactions. ABMs are
used in many scientific domains including biology, ecology and social science [39].

Overview

Agents At it’s core, ABM is about creating a set of agents that are situated
in, and interact with, an environment according to a set of rules in order to
realise some global system behaviour. There is no universal agreement amongst
researches on the exact definition of an agent [16]. However, a popular definition
was proposed by Wooldridge and Jennings in their paper ”Intelligent agents:
theory and practice”. They characterise an agent as an encapsulated computer
system, situated in some environment, and capable of flexible autonomous action
in that environment in order to meet its design objectives [55]. Some features
that are common to agents are discussed below [55] [23] [16]:

– Autonomy: agents are autonomous units, capable of processing information
and exchanging this information with other agents in order to make inde-
pendent decisions.

– Heterogeneity: agents permit the development of autonomous individuals.
Although groups of agents can exist, they are amalgamations of similar au-
tonomous individuals.

– Active: agents are active because they exert influence within a simulation.

Within an application, some of these features of an agent will be more im-
portant than others [55]. It can also be the case that there are many different
types of agents within one simulation [16].

Rules and Behaviour Agents typically poses rules which govern their behaviour
and interaction with other agents and their surrounding environment. Agent
Based Models typically simulate the behaviour of agents over discrete time points
whereby the execution of the model is synchronized at each point in time. This
means that each agent can be thought of as some form of Finite State Automata
with a state and the ability to transition this state at each time step.

Environment The environment is the shared context for the execution of agent
behaviours. The environment is responsible for scoping the agent behaviours,
mediating access to resources, and mediating interactions between other agents.

Advantages of Agent-Based Modelling In their work, Crooks and Hep-
penstall [16] propose that an agent based approach has three main advantages
over traditional modelling techniques. They state that the agent based approach
captures emergent phenomena, provides a natural environment for the study of
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certain systems, and is flexible. Other works [4] [24] describe the pragmatic ad-
vantages of agent-based models as being more akin to reality when compared to
other modelling techniques, defining them as a suitable method for simulating
systems composed of real-world entities.

2.2 Scaling Agent Based Models

Overview A key challenge in the area of ABM is the ability to model sys-
tems of increasing complexity [14]. Although there are a range of approaches
to implementing ABMs [1], they have been traditionally viewed as a desktop
computer style of exercise where simulations are executed on a single machine
[14]. However, work has shown that desktop agent based models do not scale to
what is required for extremely large applications in the study of realistic complex
systems [2] [33].

Components of ABMs that contribute to slower execution times and memory
issues when scaling to larger simulations include; a larger number of agents,
model design, and computational complexity of the agents behaviour [13]. This
can lead to model simplifications until the execution time is acceptable on a
single machine [50].

ABMs which push the limits of resources due to their large numbers of
agents or their complexity may be referred to as ‘Massively Multi-agent Sys-
tems (MMAS)’ or ‘Massive Agent-based Systems (MABS)’ [31] [29].

Current Solutions The research in [41] suggests the following techniques to
handle ABM at scale:

– Reduce the number of agents, or level of agent complexity, in order for model
to run on existing hardware.

– Revert to a population based modelling approach.
– Invest in a larger or faster serial machine.
– Run the model on a vector computer.
– Invest in a large scale computer network and reprogram the model in parallel.

Of these suggestions, the first two propose decreasing the complexity of the
simulation in order for it to run effectively on a single machine. However, this
would limit the effectiveness of ABM in the study of realistic complex systems.
The third and fourth suggestions are not truly scalable. A larger single ma-
chine may be suitable for a current complex ABM, but as these systems grow
in further complexity larger machines will be required. As a result, this is not a
cost-effective and scalable solution. The final suggestion, to run such models in
parallel, was also researched in [13]. However, several key challenges arise when
implementing an agent model in parallel. These include load balancing, syn-
chronising events to ensure causality, monitoring of the distributed simulation,
and managing communication between nodes [52]. Each of these may negatively
affect the increase in performance achieved.
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Another proposed solution to handle this greater complexity is the use of Hy-
brid Simulation [22]. Hybrid Simulation combines multiple interconnected sub-
simulations where each simulation may be implemented using different modelling
techniques [37]. Within the simulation community, two main approaches have
emerged; Distributed Simulation and Cloud Based Simulation.

The Distributed Simulation (DS) approach focuses on the development and
deployment on high-performance computing clusters, leading to tools such has
RePAST HPC [12]. However, these implementations are typically bespoke and
tailored to specific tasks [49]. Thus, a DS approach does not solve issues such as
interoperability and model reuse that are required for large-scale ABM.

Another criticism of DS is the cost and availability of computing clusters.
This has led to the proposal of Cloud Based Simulation (CBS) [49], which focuses
on the deployment of simulations in the cloud using microservices [50].

However, research has shown that there is a lack of suitable tools and frame-
works for integrating ABMs with other technologies [42]. Interoperability is a
particular issue leading to many existing Hybrid Simulations being built using
a single tool [22].

The research in [14] argues that Hybrid Simulations should not be built on
monolithic architectures but instead implemented as loosely-coupled microser-
vices in a manner that ensures scalability. They highlight that the use of mi-
croservices to achieve greater scale in ABM allows for reusable components,
interoperability, polyglot development, and deployment at scale. They propose
that each sub-simulation is encapsulated as a microservice that uses REST for
communication and can be integrated into larger simulations that are not agent-
based. This has been demonstrated using Multi-Agent Microservices (MAMS)
in the ASTRA agent programming language [53] [40] [15] [17]. Of the proposed
solutions to best handle scaling ABMs, this research seems to be the most viable
as it is in line with current software architecture best-practises [19] and benefits
directly from the advantages of a microservice architecture [27].

3 Blockchain

3.1 Introduction

History Although blockchains were first conceived in the early 1990’s [25], the
technology began to receive widespread interest with the release of the Bitcoin
protocol by Satoshi Nakamoto in 2008 [38]. The Bitcoin protocol allows for peer-
to-peer transactions in a fully trust-less environment. It does this through the use
of digital signatures, proof-of-work [21], and a distributed ledger to maintain the
state of the network. Crucially, the Bitcoin protocol solves the double-spending
problem [38] - a potential flaw in a digital cash scheme in which the same single
digital token can be spent more than once.

Overview
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Distributed ledger A distributed ledger is a database spread over several nodes
on a peer-to-peer network, where each node replicates and maintains an identical
copy of the ledger. When a new transaction occurs each node constructs the new
transaction and the nodes vote by consensus algorithm on which copy is correct.
Once a consensus has been determined, all of the other nodes update themselves
with the new, correct copy of the ledger.

Wallets To interact with a blockchain, users must hold a digital wallet. A digital
wallet is designed to store digital currencies and, importantly, has an associated
public and private key pair. The public key is used as an address to publicly
identify the wallet and to receive digital currencies. The private key is used to
initiate transactions and prove ownership of the wallet.

Transactions An simple transaction is shown in Figure 1 on page 6. If Alice
wishes to transfer some digital currency to Bob from her wallet, she must first
obtain Bob’s wallet address. Alice can now create a transaction containing the
amount of the digital currency she wishes to send, the network fee she is willing to
pay, and Bob’s public wallet address. Before broadcasting this transaction to the
blockchain, Alice must sign this transaction with her wallet’s private key. This
provides cryptographic proof that Alice owns her wallet. Once the transaction is
submitted to the blockchain, the transaction is verified by miners. Once verified,
the block containing the transaction is added to the blockchain and Bob receives
the digital currency sent by Alice.

Consensus Decentralised networks such as Bitcoin and Ethereum use proof-of-
work as a foundation for consensus. The proof-of-work algorithm is a form of
cryptographic proof in which one party proves to others that a certain amount
of non-trivial computational effort has been expended. Other parties can subse-
quently confirm this expenditure trivially [30].

The following explanation is based on information provided in the Ethereum
Whitepaper [7]. When a transaction is broadcast to the network, it is combined
with other unconfirmed transactions into a block. This block contains the list
of unconfirmed transactions, a link to the previous block, and a random nonce.
Miners race to find this random nonce such that the computed hash of the block
and the nonce begins with a specified number of zeros. Finding this nonce is
computationally expensive and ensures that a certain amount of compute power
is required to validate a block. Once a valid nonce has been found, it is trivial
for other miners to verify that this nonce meets the specified requirements and
that the block is valid. In return for their computational effort, the miner who
finds the correct nonce receives the block reward - some digital currency native
to the blockchain e.g Ether.

3.2 Ethereum

Overview Ethereum was created as an alternative protocol that allows for
building decentralised applications [7]. One of the core differences between Ethereum
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Fig. 1. A blockchain transaction

and other protocols, such as Bitcoin, is that Ethereum provides a blockchain with
a built in Turing-complete programming language that can be used to create
”smart contracts”.

Smart Contracts Smart contracts are the building blocks of Ethereum appli-
cations. They are computer programs that are stored and run on the Ethereum
blockchain. Fundamentally, a smart contract is a collection of logical functions
and state that resides at a specific address on the network. Smart contracts are
a type of Ethereum account, meaning they have an Ethereum balance and can
send transactions over the network. User accounts can interact with a smart con-
tract by submitting transactions that execute a function defined on the contract
[28].

Ethereum Virtual Machine The Ethereum Virtual Machine (EVM) is the
runtime environment for transaction execution in Ethereum. Ethereum’s state
is a large data structure which holds accounts, balances, and a machine state
which can execute machine code. The EVM is responsible for defining the rules
for computing new valid network states from block to block. This ensures that
the Ethereum network has only one valid state at any point in time [54].

Scalability Peer-to-peer (P2P) networks have received an increase in attention
in recent years due to emergent blockchain technologies (BCT) [38] [7]. P2P
systems are scalable by design. In a P2P network, each node acts as a server
which allows the distributed system to grow linearly with the number of nodes
available [43]. In a typical P2P network, this is augmented by the fact that no
single node must maintain a global knowledge of the system, allowing each node
to act on a smaller subsection of the system [32].

The Ethereum network is a P2P network in which [35] estimated there to
be approximately 300,000 nodes on the network at the time of their research.
Each of these nodes acts as a server running the EVM. This allows for cost-
effective scale without the need for application developers to manage a large
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cluster of servers. This provides a good argument for leveraging existing open
P2P protocols for efficiently running applications at scale.

As it stands, the Ethereum network does not implement the partitioning of
network data across different nodes. This means that each node is required to
maintain a global state of the network at any point in time. Given this, along
with the POW consensus algorithm used, the Ethereum network is currently
limited to 15 transactions per second (TPS). A comparison that can be made is
to Visa, who as of 2018, was processing roughly 24,000 transactions per second
[5]. Application layer solutions, knows as Layer-2 solutions, are being developed
to allow for greater throughput [45]. On top of this, the Ethereum foundation is
actively updating the network architecture and consensus algorithm to achieve
closer to 100,000 transactions per second on the Layer-1 network [8] [44].

4 Blockchain and Agent-Based Simulations

There exists a body of research concerned with leveraging decentralised peer-
to-peer networks, such as blockchain technology (BCT), to enhance elements of
centralised systems [34] [48].

Some of this work is concerned with utilising BCT with ABM and Multi-
Agent Systems (MAS) [36] [9] [46]. Generally, there exists two approaches when
applying BCT to ABM and MAS. The first approach uses traditional centralised
agents running on a centralised machine where the blockchain is used as an im-
mutable ledger and trusted data store. The second approach is more integrated,
the agents directly interact with, or are part of, the blockchain technology. [11]
describe these two approaches as ”agent-vs-blockchain” - where the agent and
blockchain run side by side, allowing the agents to exploit blockchain services
when needed and ”agent-to-blockchain” - where the effort is focused on incor-
porating agent-oriented models and technologies directly into the blockchain.

Limited research could be found exploring the use of blockchain technology to
achieve scale in agent-based simulations. Most studies were concerned with other
affordances offered by BCT such as trust [10] [3] [18] [51], data immutability [18]
[3] [51], mitigating single-points of failure [3], cost [3], and security [47] [10].

Blockchains can be typically classified in two main categories. Permissionless
public blockchains allow the addition of blocks to the chain by any process
provided a cryptographic puzzle is solved, examples of permissionless blockchains
include the Ethereum and Bitcoin networks. Permissioned blockchains are run
by a preselected closed group or centralised entity, examples of permissioned
blockchains include Hyperledger Fabric (HF) [9]. One of the core benefits of
permissioned blockchains, such as HF, is that they can handle a greater number
of transactions per second due to their centralised nature.

In their work [9] used the HF blockchain to create an agent based au-
tonomous intersection management system for smart cities. They created agent-
based smart contracts which could handle one transaction per second on this
network. [46] used the public Ethereum blockchain along with Software Defined
Networking (SDN) to create a blockchain based hybrid network architecture for
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smart cities. With this architecture they achieved a median latency of 3.9 sec-
onds per transaction. They also tested the latency directly on the Ethereum
network without the addition SDN. This resulted in a median latency of 21 sec-
onds per transaction. From these works it is clear that permissioned blockchains
such as HF and permissionless blockchains with some centralised system compo-
nents achieve greater transactions per second compared to architectures running
solely on permissionless blockchains such as the Ethereum network.

5 Conclusion

This review explored existing literature and provides an overview of ABM; issues
with, and current solutions for, scaling ABMs; an overview of BCT; and existing
work utilising BCT for scaling ABMs. It is clear that in order to model sys-
tems of increasing complexity an interoperable, reusable, and scalable solution
is required. Current state-of-the-art solutions to this scaling problem propose
the use of Hybrid Simulation in a microservice environment. Given the ability
to execute arbitrary functions across a global decentralised P2P network, BCT
offers another possible solution to this scaling problem. No existing literature
could be found which looked specifically at the use of BCT to achieve web scale
agent-based simulations. Given the Ethereum layer-1 network is currently lim-
ited in terms of transactions per second, current research into utilising BCT to
run ABMs is forced to use either centralised components or private blockchains
in order to achieve throughput similar to production grade centralised systems.
However, new layer-2 solutions and upcoming upgrades to the layer-1 protocol
will allow the public Ethereum network to scale it’s transactions per second
beyond current centralised systems. As a consequence, the remaining research
will focus on creating a proof of concept, scalable, ABM using BCT and smart
contracts.
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